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Abstract

The two-dimensional problem of gravity-driven flow of a thin layer of fluid down a
porous inclined surface is discussed. A velocity profile based on the steady-state flow is
used to derive a first-order Integrated Boundary Layer model. A linear stability analy-
sis is conducted while non-linear numerical simulations are used to validate the stability
predictions. The stability predictions of the first-order model are also compared directly
to those of a second-order model. The influence of porosity and other flow parameters is
investigated both analytically and numerically.
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Chapter 1

Introduction

Gravity-driven flow down an incline is a classic problem in theoretical and experimental
fluid mechanics, but also has broad applications in engineering and science. We are inter-
ested in what the flow looks like, how it evolves, and whether or not it is stable. That
is, if we introduce a small perturbation, will it grow in time or will the flow return to
steady-state. This problem has been studied for over sixty years using a variety of tools
and techniques [1]-[3]. But the problem also has many well-studied variations with rich
dynamics. Some examples include the introduction of a heated boundary, bottom topog-
raphy, and chemical additives [9]-[16]. In this work we are mainly interested in the case
with a porous boundary [15]-[17]. We will investigate how porosity affects the flow and
whether it has a stabilizing or destabilizing effect.

The full Navier-Stokes equations and boundary conditions are far too difficult to work
with analytically or numerically. Instead, we will develop the Integrated Boundary Layer
(IBL) model by integrating across the fluid layer. This reduces the number of flow variables
and incorporates the boundary conditions into the governing equations. It results in a
system that we can linearize and predict the point of destabilization. The parameter
that will control stability will be the Reynolds number, which is usually associated with
turbulence. Although our model will not capture the turbulence one would observe in an
actual experiment, the Reynolds number will still have an effect that we are familiar with.
A large Reynolds number will result in more disturbances with less resemblance to laminar
flow. We will simulate our model numerically in Python and compare it to our theoretical
predictions.



Chapter 2

Model Development

2.1 Governing Equations and Velocity Profile

Consider the two-dimensional (2D) isothermal flow of a viscous incompressible Newtonian
fluid down a porous incline as shown in Figure 2.1.
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Figure 2.1: 2-D flow down porous incline

We define our coordinate system with x along the incline and 2z pointing into the fluid
layer. Let h denote the fluid thickness, 8 the angle of inclination, and g the acceleration



due to gravity. The governing Navier-Stokes equations [18] are

%Jru@er%——la—PwL sin 3 + v @+@ (2.1.1)
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Here u and w are the velocities in the x and z direction respectively, P is the pressure, p
is the density, and v is the kinematic viscosity.

2.1.1 Velocity Profile

The first step to understanding this system is to derive a velocity profile of the fluid. We
simplify this system by assuming steady, laminar unidirectional flow in the x direction,
then

0 0
EZO and %:O

From equation 2.1.3 we have

8_w
0z

=0 — w = constant.

But if the surface is sufficiently saturated then a valid approximation is to take w = 0.
From equation 2.1.2 we get

10P
0= ——8— — gcos 3,
p 0z
oP
= - = —pgcosf,
0z

— P(z) = —pg cos fz + constant.
On the free surface we have P = P,,,, which gives us the equation for hydrostatic pressure

P(z) = Patm + pg cos B(h — 2).



From equation 2.1.1 we have

, 0%u 0%u gsin 3
Ozgsmﬂ—f—V622 :>622:— .
which we integrate once to get
du  gsinf3
0z v

zZ+ .

Now we apply the zero-stress boundary condition % =0 at z = h so that

gsin
v
gsin 8

0=

h+61,

:>01:

h,

and

Ou  gsinf3
0z v (h=2).

We integrate again and get

u(z) = 982135

z2(2h — 2) + co.

We need this to obey the porous bottom boundary condition u = (512—’; at z =0 from [7] &
[19]. This will be further explained in section 2.2. Note that

u(0) = co,
SO
0
cy =01 2 )
0z|,_,
gsin 8
2v
_gsinf
2w

= (2h — z — 2)

)

z=0

201h.

Our velocity profile is therefore

u(z) = gsin g

5 [2(2h — z) + 25, h]. (2.1.4)
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2.1.2 Nondimensionalization

It is extremely useful in the study of fluids to non-dimensionalize the equations that we
work with. That way we do not have to be concerned by the units of the flow variables
or parameters such as v. Instead the flow is controlled entirely by unit-less parameters
like the Reynolds number or the Weber number. Before we non-dimensionalize, we need
one crucial expression that quantifies the amount of fluid flowing down the incline at any
point. This is known as the flow rate and we can calculate it from our our velocity profile,

SO
h
q :/ udz,
0

: 3
= M {h3_h_+251h2} 7

2v 3
zﬁgﬁmb+%} (2.1.5)

This quantity is typically prescribed in experiments. Now we are ready to decide how to
non-dimensionalize the governing Navier-Stokes equations 2.1.1-2.1.3. Instead of using the
flow rate based on slip-length, we will use a no-slip flow rate. This is equivalent to setting
01 = 0 in 2.1.5. We will denote this no-slip flow rate by ). Now we rearrange to obtain

the expression
3 3
H:(”Q>. (2.1.6)

gsinf

This is known as the Nusselt thickness and we will use it as our length scale in the z
direction. Similarly we choose a length scale L in the z direction and typically we have
L > H. So we define § = % < 1 to be the shallowness parameter. Similarly we will choose
a velocity scale U and a pressure scale pU%. We also have the fact that Q = HU. We
denote a dimensionless parameter with an asterisk and introduce the following quantities:

r=Lx", z=Hz", wu=Uu",

U L
= W—w*, t=—t" P =pU*P*.
w WLw, ot pU



We make the suitable substitutions to equations 2.1.1-2.1.3 so that
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Now we drop the asterisks and use the relations Q = HU, § = %, and Re = g to get
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We use the Nusselt thickness 2.1.6 to arrive at our non-dimensional Navier-Stokes equations
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The parameter Re is known as the Reynolds number and it will be pivotal to our study
of stability in this system. At lower Reynolds numbers the flow tends to be laminar, but

a higher value will lead to irregular flow.

Finally we want to non-dimensionalize our flow rate 2.1.5 and our velocity profile 2.1.4
which we will use to develop our model. We choose ¢ = Q¢* and 67 = %1 to show that

. gsmﬁH?’ 01
3 Qh {1+3Hh*
gsmﬁH?’ 3 07
1
3v Qh [ +3h



Our velocity profile becomes

Uu =9 Szmﬁ [H=*(2Hh* — Hz*) + 26, Hh*]
v
Q gsinf 20,
. gsin 8 H3 e “ _—
|l 2%(2hF — 2*) + 201 h*
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Dropping the asterisks for notational convenience gives us

u (2.1.10)

~ 3q | 2(2h —2) +20:h
243 1+ 3%

2.2 Boundary Conditions

Before we develop the Integrated Boundary Layer Model we need to prescribe and non-
dimensionalize several boundary conditions that define our system.

2.2.1 Porous Bottom

We model a porous boundary with the notion of a slip condition, originally introduced in
[7]. To quantify the flow along the boundary, we use the slip length denoted d;. This is the
distance along the interface where the tangential velocity vanishes, thus becoming no-slip
[19]. So at z = 0 we have

ou
_ 5
(v 1 82 )
and we non-dimensionalize so that
U ou*
Uu' = 6———
U’ 1 H a *7
— u" =0 Ou”
u = )
Loy



We drop the asterisk for convenience and get back

0
u= 518—7:. (2.2.1)

2.2.2 No Normal Flow

Although the boundary is porous, setting w = 0 at z = 0 is still a valid assumption [15].
After some time the medium past the boundary will become sufficiently saturated to reduce
the normal flow to a very small value.

2.2.3 Kinematic Condition

This condition describes the fact that the fluid cannot cross the interface along the free
surface. The interface is defined at z = h(z,t). So at z = h we need

D
E(z_n) _07

Dz Dh _

Dt Dt

YT T Ve

We non-dimensionalize so that

e B0 o
L LU ot L 0x*’
oh* oh*
ot T Ox

:}w*:

We drop the asterisk and get back

_oh o

o U (2.2.2)
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2.2.4 Continuity of Normal and Tangential Stress

We can describe these conditions at the interface z = h, as in [12], with the following tensor
equations

Patm+ﬁ ot N=—0V. ﬁ, (2.2.3)
N.orT=o0 (2.2.4)

Here, o is surface tension, ﬁ is the outward pointing unit normal vector, ? is the unit
tangent vector, and 7 is the symmetric stress tensor. They are defined as

_0h 1
No__ 1 [ * To_ 1
1+ (57 \ 1 1+ (5" \5

and
—P+2ugr p (G +32)
p(ge+52)  —P+2u%t

In the stress tensor, u is called the dynamic viscosity and can be related to the kinematic

viscosity through the density: v = %.



From equation 2.2.4, we have

0:ﬁ~7~?,
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But we know from the continuity equation 2.1.3 that g—f = g“ so the calculation above

reduces to
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We non-dimensionalize and get
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Now we look at equation 2.2.3. Carrying out the matrix multiplication as done above
and taking the divergence of the normal vector results in the following

OZPatm+ﬁ-T-ﬁ+0€-ﬁ,

1 on\> ou oh (du  Ow ow
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Making some substitutions and dropping the asterisks gives us
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Now we will use the following relationships defined at various points above

H
Q= HU, 0= —, V:H, and Re:Q.
L p v
We use these to see that
L:M_ézy_(s:i and L:ﬂ:W&
LpU  pHU @ Re pHU?  pQ?

Here We is the Weber number and is a measure of surface tension. Finally, we substitute
these relationships in to arrive at the final form of the boundary condition

9
e ) £ )
Re [1+(52(g—;‘)] Oz Oz Ox \ 0z Oz

Wes?2h
- Qo (2.2.6)

e (3]

2.3 Integral Boundary Layer Model

We are now ready to develop the IBL model which is the central idea in this work. Consider
the non-dimensional Navier-Stokes equations 2.1.7-2.1.9. In this model we do not work with
the full complexity of this system. Instead we will only keep linear terms in 9, dropping
all higher order terms. This will result in a simpler model which will be much easier to
simulate and study analytically. To first order in ¢ the equations are

Oou Ow
e T 2.3.1
ox + 0z 0 (23.1)
ou ou ou Op 0%u
ORe (a T T w&) = —OReg T3t om (2.32)
op *w
0= —Rea - 3COtB + 5@, (233)
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with boundary conditions to first order at z = h,

and at z =0

w = @%—u@
ot oz’
B _2_5 8u
p_patm R@ ax
ou
O—a,
ou
”_5182
w = 0.

Oh Ou
0z 0z

(2.3.4)

> (2.3.5)

(2.3.6)

In addition to simplifying the governing equations, we will also change the flow variables
from u, w, and P to ¢ and h. Here h is just the height of the free surface and ¢ is flow rate
defined as ¢ = foh udz. We begin by integrating 2.3.1 across the fluid layer from z = 0 to

z=h, so

ow
—d —d =0,
/ z+ 0 Z

— wlf + / —dZ—O

But using 2.3.4 and 2.3.8 we get

Oh oh " Ou
ot or ), oz dz =0,

oy T U+

By the Leibniz integral integral rule, we know

h
3u
= —d
N Z+u
" ou dq
— —d
o Ox Ox

13
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We substitute this into 2.3.9 to find
oh  Oq
9t ox

This is the continuity equation expressed in terms of ¢ and h.

= 0. (2.3.10)

Next we seek to eliminate the pressure variable by using 2.3.3. We denote one term
as O(0) because it will become quadratic in § as the equations are combined and will be
dropped. We begin with

dp  —3cotf
3. he + O(9).
We integrate
-3 cotﬁ
/ L. —/Z ~he dz + 0(9),
—3 cot
— B p= B 2) 4 00),
3 cot
= p=0pl,_,+ I 6(h —2)+ 0(0),
e
and apply condition 2.3.5
3cot 8
D = Datm + Re (h—Z)+O(6)

Note that the terms with § in 2.3.5 have been absorbed in O(9). Now we differentiate with
respect to x

dp  3cotBOh
dr ke o O
and plug into 2.3.2
du  Ou du 0%u )
dRe (EJru%%—w%) = —300'55—5+3+ﬁ+0(5 ). (2.3.11)

Now we drop the O(d?) term since this is a linear model in 4.
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Next we integrate the right-hand side (RHS) of 2.3.11 from 0 to h and use 2.3.6 so that

h h ah
/ RHSdz—/ (—3cotﬂ—5+3+
0 0 ox

= (=3 cot B)(dh)

= (=3 cot 5)(dh)

oh
or
oh
or

— 4 3h+ —

— 4 3h+0— —

022
ou

2
%) 0.

h

9z,
Ou (2.3.12)

0z

2=0

Note that the last term % |z:0 cannot be evaluated. We do not have a boundary condition

that covers this case. We leave it for later.

Now before we integrate the left-hand side (LHS) of 2.3.11 we need two facts. First, by

the Leibniz integral rule, we know

@ —2 /hudz
ot ot J, ’
B " Ou ds + oh
)y ot T Ve
" o dq oh
—dz=—= —u— 2.3.1
— ) a T a "u (23.13)
Second, using the fact g—f = —g—;‘: from 2.3.1 we have
/h u%—f— % dz—/h—la—lﬂ+—auw— 6_11) dz
o L Oz oz Jo 202 0 02 "z ’
Jo 1200 02 ox| 7
/h [10u? 8uw+18u2 J
Jo 202 92 20z =
"Tou?  Ouw
= —_— 4 — . 2.3.14
/0 | Ox - 0z } dz (23.14)

We will evaluate this integral in two parts. By the Leibniz integral rule again, we know

r

Oh

wrdz —u?—

or’



By parts and using 2.3.4 and 2.3.8 we have

Combining these with 2.3.14 we have

ou ou 3 h 0h oh

Now we integrate the LHS of 2.3.11 and use 2.3.13 and 2.3.15 to show

h " ou ou ou
LHSdz =4 — — — | d
/o Sdz Re/o <8t+u6$+waz) z,

_spo |02 Oh O L 200 Oh 0k

og o [,
5Re{at aI/udz.
Now that we have the integrals of the LHS and RHS, 2.3.2 becomes

h
dRe [8(] 0 / u? dz} = —36h cot ﬂ— +3h — Ou (2.3.16)
0

ot Or 0z

2=0

But now we need to find some way to evaluate fo u?dz and 3“ _o- In order to solve
this exactly, we would need the full velocity profile which cannot be solved analytically.
Instead we use the velocity profile from section 2.1. Although this was derived using steady

unidirectional flow, it is still a valid approximation. Recall the non-dimensional velocity
profile 2.1.10

u(x, z,t) = g% [Z@h —2)+ 251h] |

1+ 3%
Therefore we can easily find

ou

0z

_ 3q
im0 hE(L+3%)
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and

S—
>
I
[\
U
N
|

5/ 2(2h — 2) + 20h)* dz,
1+31

( R® + 51h4 + 45%3) ,

|
o »J>|© »M@

351

— T (1+ ,
h(1 +3%)2 ( 2h?

h

_ 64 <1+%+%>

B Gyl B
5h\ (1+3%)

Using these two new facts, 2.3.16 becomes

8q+§2 q_ +h—+22'12 :_35h00t58—+3h—L&7
ot 50x (1+3%) Ox h? (14 3%)

5 1562
_— @_A'_g §q_2 H5h_1—+?21 +§Wh2 :ﬁ 1_#6 ]
ot 0z \5h \  (1+3%) 2 Re dRe h3 (14 3%)

Thus the Integral Boundary Layer (IBL) equations are

0Re

oh  0q
o a0

dg 0 (642 (1+% + 00\  3cotB,) 3k g
9g , 9 RN S I ACCUICY R IR R (S B B OF T
ot  Ox ( ( (1+3%)2 2 Re O0Re h3 (1 —1—3%) ( )

Note that these equations have all of the boundary conditions incorporated and there is no
more z-dependence. We can understand the flow in terms of just two variables, the height
h(z,t) and the flow rate ¢(z,t). This simplification will also make numerical simulation
much simpler since we do not have to include complex boundary conditions in our code.
All we will have to do is fix the flow parameters, add initial conditions, and see how h and
q evolve in time.

(2.3.17)
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Chapter 3

Linear Stability Analysis

3.1 Linearization

In this section, we want to predict when the flow becomes unstable. That is, if we perturb
uniform flow, does the perturbation grow or decay with time. First we need to actually
find the steady-state flow, denoted by hs and g,. We set % = % = 0 and notice equation
2.3.18 becomes

PR S
n (1+32)
‘ )
— ¢, =h’ (1+3h—1) .
So if hy = 1 then ¢, = 1 4+ 30;. We will now perturb the steady-state flow as follows
h=1+h,
q=1+38+4, (3.1.1)

where h < 1 and § < 1.

Now we will substitute the steady-state and perturbations 3.1.1 into the IBL model
2.3.18 piece by piece. From the left side of 2.3.18 we see

2 _ 56 1562
@1+ 4+ 2 (1364 L4350+ saame (3.12)
o\ (143%) 1+h (1+352)

18



We take the Taylor expansion of each piece and only retain terms that have perturbations
of order one. So we have

55 1562
L+ 20+ e 1507 +100, +2 4507 + 4567 4140, + 2

= 2 h
61 2 3 ’
(1+h)(1+3.%5)2 2(1 + 304) 2(1+ 304)

and

(14361 +¢)° = [(1+361)* 4+ 2(1+301)q] -

Therefore 3.1.2 becomes
1507 +100; +2 4567 + 4567 + 146, + 25 1567 + 106, +2 _

3.1.3
> 201 + 30,) T+ 30, (3.1.3)
Let
1507 4106, + 2
o 1+36
then we can simplify 3.1.3 as follows
1507 + 106, + 2 B 3007 + 200, + 4+ B 4562 + 1507 — 66, — 2f~z+ 2\
2 2(1+ 36, 2(1+ 3,) ¢
2 _ 2 _9_
:1561 —|—;051 +2 N — 1563 2h—i— A
1502 + 106, + 2 1 -
—51+201+ +>\cj—{1—>\—3563]h. (3.1.4)

Next we look at a different piece of the second IBL equation 2.3.18 and use the same
procedure

q 14301 +¢q

H ~ )
PU435) (14 k) (1 + 3li—lh)

N 1 301 5
~(1+ 30 1—-3h 1+ ———h

z(1+ 1 )(1—3B+3—51E),

1+ 36, (1+ 301)
g 1426
—(1 1-3 h
(+1+351)< 1130, )
i 1426, -

14 36, 1430,
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So the RHS of the 2.3.18 equation becomes

3(1+h) q 1+ 20, ;
ALY & I h
SRe < 1435 T3, )
N S (3(1+251)B—q). (3.1.5)
SRe(1 + 30,

It is easy to see that only the perturbations remain, when we plug 3.1.1 into 2.3.17. Using
3.1.4 and 3.1.5, the linearized IBL equations are given by

oh %0 _

— = 1.
o or T ) ] (3.16)
85 6.0 6 15 ,] 0h  3cot 3R
S s T D G £ on
ot 75 8x+5[ 2 '|9xr  Re Ox
___ 3 (3(1+251)13—q). (3.1.7)
SRe(1+36,)
3.2 Wave Propagation
Next we set the perturbations to
h = hoete®™ and G = qoee™®, (3.2.1)

which describe wave solutions. Here v = g + 777 is a complex-valued parameter where
vg is the growth rate. We know that v > 0 =— a disturbance will grow in time,
vr < 0 = a disturbance will decay in time, and 75 = 0 = neutral stability. We
substitute these wave solutions into the first IBL equation 2.3.17 which results in

ho'ye”teikx + qoevtikeik”” =0,
ik
= hyg = ——qo. (3.2.2)
8
Now we substitute the wave solutions 3.2.1 into the second IBL equation 2.3.18 and divide
out the exponentials to get

6. . 6 15 ,
(7q0) + 5)\(”590) + [1 - A= 753} (ikhg) +

3
~ ORe(1 +36))

3cot 8

(ikho)
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Next we substitute 3.2.2 in and factor out ¢q to get

Y Re ~

v+ —Xik + = 1—>\—?6f

6 6 15 ] k? 3(:0’55]{:_2
5) 5

3 1k
—— | 3(1 +20;)— + 1 = 0.
+<5Re(1 +361) < (1+20,) Y * )]CJO

(3.2.3)

For a non-trivial solution with ¢y # 0, we must have the expression inside the brackets

equal to 0. To find the onset of the instability we set

v =g+ iy =0 — ick.

Here c is the phase speed which we can see from the following relation:

ewtezka: _ emqtezkxem[t _ evRtez(ka:—f—w]t)'

(3.2.4)

Clearly e?®' describes exponential growth and decay while e!**t71%) is a travelling wave.
Compare this equation for a travelling wave to the more conventional form e**=¢%) so

vr = —w = —ck. Using 3.2.4 on the bracketed part of 3.2.3, we need

) 6 6 15,1  3cotfl
WevBrgia g1 g

5 )
3cot 3 [1 B 3(1+251)} _o.

+ 0Re c

Note that the first term is the imaginary part and the second term is the real part.

Setting the real part to zero yields

Cc = 3(1 -+ 251),

and plugging this into the imaginary part and setting it to zero results in

cot 3
(1+261)

B 6 15
of—3(1+251)+5A+5(1+251) [1—A— 251] + 52
5 6 1 9y cot [
= 0=—-3(1+26)"+ (1 4+ 201)A + =[2 — 2X — 1507] + ,
5 ) Re
t
= 0=—(14+01)(1+301)+ C;f.
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Therefore we have

cot 8

Re = Recrit = (1 + 51)(]_ —+ 351) ‘

(3.2.5)

This describes the tipping point when the perturbations begin to grow instead of decay.
We call this the critical Reynolds number and denote it by Re..;;. We now have a way to
predict when the flow becomes unstable as a function of the slip-length §;. It is also clear
from this expression that a porous boundary destabilizes the flow since any positive value
of 0; will decrease Re..;; when compared to the non-porous case. It is worth comparing
our prediction to the existing literature.

If we were to set 0; = 0, or equivalently, to perform all of the above analysis with the
no-slip condition u = 0 at z = 0, we would arrive at the simple expression Re..;; = cot [3.
But the no-slip case has been studied extensively over the years using more sophisticated

techniques as in [1], [2], and [3]. These all show the well-known theoretical result Re..;; =

gcot [ which has also been verified by experiment [4]. This indicates that our result in

3.2.5 is already an overestimate. We are missing the fraction g But more recent work in
[15], [16], and [17] has produced an entirely different expression. It is given by

5 1+ 30,

Re ;s = = cot 3.2.6

"6 ﬁ{1+661+%5f} (3:2.6)

In [15] the authors use a much more sophisticated second-order weighted-residual model

to derive this expression. This weighted-residual method, originally from [5] & [0] has led
to many advancements in the study of flow down an incline. We anticipate that 3.2.6 is
more accurate. It also includes the fraction 2 missing from 3.2.5. While the model in [15]
does have these notable strengths, it also has notable downsides. It is more complicated
to derive and simulate and does not have the exact solution step that we will see in our

model.
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Chapter 4

Numerical Method

4.1 Overview

We want to solve the first-order IBL equations

oh dq
E—Fa—x—o,

o, 0 (6¢ 14350y 15 LBeotB) _8h (g
ot~ O0x \bh \ (143%) 2 Re ~ ORe h3 (1+3%) |

Note that the flow is completely characterized by the dimensionless parameters: ¢, 41,
cot 3, and Re.

(4.1.1)

We establish a computational domain 0 < z < L and apply periodic boundary con-
ditions (BC), h(x = 0,t) = h(z = L,t) and ¢(x = 0,t) = g(z = L,t). We use initial

conditions (IC) of a perturbed steady-state solution given by

2
h(z,t =0) =1+ esin (%),

2
q(z,t = 0) = 1+ 36, + esin (%x) . (4.1.2)

It can be shown that perturbations with infinite wavelength are the most unstable [17].
So in this case we choose a perturbation with longest possible wavelength, that of the
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computational domain.

In order to solve the IBL equations 4.1.1 above, we use a fractional-step method. The
first step is to solve the hyperbolic system given by

oh  Oq

o Tor

o¢ & (62 [1+3 455N 30015,

R [ L TER R S 4.1,
ot T or <5h (1+3%)2 "2 Re h 0 (4.1.3)

using 4.1.2 as the initial condition. Note that in 4.1.3 we set the source term on the RHS
to 0. This will be solved over a time step At. Then the output for the first step will be
used as an initial condition for the second step.

In the second step we now deal with the source term and solve

dq 3h q
—=— 1= 4.1.4
Ot 0Re ( h3 (1 + 3%)) 414

Note that in this step h remains constant since the RHS of the first IBL equation is 0, so
it has no source.

4.2 Step 1

Equations 4.1.3 are a non-linear system of hyperbolic conservation laws. We express them
in vector form as

i OF
2 Tz 0 42.1
ot + ox ’ ( )
where
h q
U= [ } and F = 64% % 4 BeotBp2| (4.2.2)
! SR\ (1480L)” 2 Re
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We will solve this using the MacCormack method [20]. It is a second-order finite difference
predictor-corrector algorithm given by

ﬁ; ﬁn_ 2_33 [F( J+1) - ( ]):| (4.2.3)
i = () - o [F () - F )] (4.2.4)

Here Az is the uniform grid spacing, At is the time step, and @} = (z;,t,). A proper
stability analysis would be exceedingly complicated due to the hlghly non-linear nature of
the IBL equations. To compensate we use a very small time step to guarantee numerical
stability. We choose computational parameters Az = 0.01 and At = 0.00005 throughout
our simulations.

4.3 Step 2

The second step is a linear separable ODE which we can solve exactly. We use ¢ = ¢ as
an initial condition and have h = hq since it is constant in this step. We have

dq 3h q
1—-— 4.3.1
dt — 0Re ( h3 (1 + 35_1)> ’ ( )

= (4.3.2)
( )
3ht
(1432 q - 433
( * h) 30y | T ome € (4:3.3)
— 11— _ _—KeT 4.34
h3 (1 +39) (4.34)
)
— q=h (1 + 3%) [1—-Ke ], (4.3.5)
where ' = m. Now we use the initial condition ¢ = gy at £ = 0 to get

51
q = hi (1+3h ) [1— K], (4.3.6)

0
— K=1-— " (4.3.7)

h%(l—l—,‘i—;)'
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So our solution to the ODE is

5 0
q=hd (1 + —1> — [hg <1 - —1> — qo} et (4.3.8)
ho ho

The fact that we can solve the second step exactly is a beautiful aspect of these particular
IBL equations. If we chose a different complication besides a porous boundary or used a
second-order model as in [15], we would have to solve this step numerically.
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Chapter 5

Results and Discussion

With our numerical scheme established, we are ready to investigate what this flow looks
like and what happens after it becomes unstable. Unless stated otherwise, we use cot § = 1
in our simulations which is a 45-degree angle.

Consider an example with the other flow parameters 6 = 0.1, ¢ = 0.1, L = 2, and
01 = 0. Note that this is the case with an impermeable boundary. Our model predicts a
critical Reynolds number of Re..; = 1. We choose one case with Re = 0.5 and another
with Re = 1.0. The former should be stable and we anticipate that it will decay back to
steady state, while the latter should be unstable. We run the simulation for 15 units of
time which can be seen in Figure 5.1.

The stable scenario behaves exactly as expect and decays back to steady state. For the
unstable case we see three distinct spikes and if we were to continue the simulation they
would stay in this fixed position travelling down the incline. The spikes with height greater
than 3 are certainly unphysical since we started with a perturbation of just 0.1 and the
fluid height was essentially 1 everywhere. But it is important to remember that this is a
first-order model which eliminated one of our terms that makes up viscosity. If we had the
full influence of velocity, it would make the height of the spikes shorter, wider, and closer
to reality.

In Figure 5.2 we can see how the spikes form with the introduction of a porous bottom.
We see many small peaks develop which come together to form four larger peaks of equal
height. Note that there are four spikes after 15 units of time, while in the last example
there were only three. We can attribute this to the destabilizing effect of a porous bottom
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Figure 5.1: Simulations with § = 0.1, e=0.1, L=2, and 6; =0

which we concluded in our linear stability analysis. Again the height is unphysical but
we are neglecting viscosity. It is also important to point out that our numerical method
conserves volume. If we integrated across the fluid layer at each time step, we would realize
that there is always the same amount of fluid. The mass that contributes to the peaks
clearly comes from the flat part of the flow.

Another interesting aspect of this system is how the Reynolds number affects the desta-
bilized flow. We can actually control the number of spikes we get in the end by increasing
or decreasing Re. Using the same flow parameters as above, we can determine numerically
that the critical Reynolds number is in the range (0.74,0.75). Choosing 0.75 produces only
one spike, but we can add spikes by increasing this value as seen in Figure 5.3. In general,
a higher Reynolds number results in a fluid that is more likely to be turbulent and further
from stable, laminar flow. Our observation of more spikes for a larger Reynolds agrees
with this idea.

We are now ready to see how our theoretical predictions compare to our numerical
results. We are mainly interested in the influence of porosity and how varying ¢; affects
Re..;;. But before we can vary ¢;, we must fix our other parameters. In Table 5.1 we test
several combinations of parameter values.
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t=1, Re=1.0

t=4, Re=1.0

t=2, Re=1.0

t=5, Re=1.0

t=3, Re=1.0

t=6, Re=1.0

Figure 5.2: Simulations with 6 = 0.1, e = 0.1, L = 2, and ¢; = 0.1

0 €
0.1 0.1
0.05
0.025

0w o A N OO O &~ N OO O B N ™

Recrit
(0.89, 0.90)
(0.88, 0.89)
(0.88, 0.89)
(0.87, 0.88)
(0.93,0.94)
(0.93,0.94)
(0.92,0.93)
(0.91, 0.92)
(0.96, 0.97)
(0.96, 0.97)
(0.96, 0.97)
(0.95, 0.96)

0.05

0.1

0.05

0.025

0 O b N O OB N OO O DN

Recrit
(0.87,0.88)
(0.86, 0.87)
(0.85, 0.86)
(0.84, 0.84)
(0.92, 0.93)
(0.91, 0.92)
(0.91, 0.92)
(0.90, 0.91)
(0.96. 0.97)
(0.95, 0.96)
(0.95. 0.96)
(0.94, 0.95)

Table 5.1: Influence of 4, €, and L on Re,.;
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Figure 5.3: Simulations with 6 = 0.1, e = 0.1, L = 2, and ¢; = 0.1

We notice increasing the length has barely any effect on the critical Reynolds number.
Also, as we extend the domain we get less numerical stability and we are forced to change
either the time step or the spatial domain to accommodate. We want to avoid doing this
as it makes the simulation more expensive and there seems to be no advantage. We also
notice that 6 = 0.1 results in smaller changes to Re..;; as we vary €. Although any value
for € seems reasonable, in theory we want our perturbation to be infinitesimal. So choosing
¢ = 0.1 may be slightly large, while taking e = 0.025 takes far longer for the flow to become
unstable. For our study of porosity we fix the parameters § = 0.1, e = 0.05, and L = 2.

The results of our numerical experiments are displayed in Figure 5.4. But it is important
to remember that we are not testing our predictions with the full dynamics of the Navier-
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Stokes equations. Instead we are simulating the first-order IBL equations 4.1.1 and plotting
the predictions from linear theory 3.2.5.

1.0 k — Numerical
----- Linear Prediction
0.8
= 0.6 1
7]
o-
0.4 4
0.2

0.0 0.2 0.4 0.6 0.8 1.0
61

Figure 5.4: Re..;; as a function of ¢; from first-order model

Immediately we notice that our theoretical predictions offer a decent estimate for sta-
bility, but overall under-predict the critical Reynolds number. It appears to be best for
small slip-length 6 < 0.1. The linear prediction seems to decays too quickly and has too
steep of a slope. It is also worth comparing our first-order model and linearization to a

completely different model.
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Figure 5.5: First-order IBL model and Weighted-Residual Model

We see that the agreement between these two models is very good for §; < 1. The
largest difference is at 9; = 0 where the first-order model predicts 1 since the expression
does not include the fraction % Now the slip-length is not restricted to small values and
is only bound by the size of the domain. We can see some larger scale behaviour in the
plot on the right. Both models have an asymptote at 0, but the first-model decays too

quickly and differs the most at about d; = 2. So for very large values of ; both models
will predict almost the same value.
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Chapter 6

Conclusion

In this work we studied 2D gravity-driven flow down a porous incline. This is one of many
variations of a classic problem in fluid dynamics. To better understand the problem, we
have developed the first-order Integrated Boundary Layer model. This is a relatively simple
model with only two governing equations. We were then able to linearize the equations and
predict the destabilizing critical Reynolds number as a function of slip-length and angle
of inclination. We simulated the IBL equations numerically with small perturbations and
observe low Reynolds number flow to quickly return to steady-state. For high Reynolds
number flow we see the perturbation produce many small waves which gather together into
many large spikes that become a permanent feature of the flow.

Overall there is good agreement between our predictions and our numerical results.
However, this problem has been studied in depth by others and there exist better models.
One example is given by a weighted-residual model. This is much more mathematically
complex, which makes it harder to derive and more expensive to simulate. Although it is
known to give better agreement between stability predictions and numerical results, the
added complexity and necessary computational power may not be worth it. Depending on
the physical system, relevant flow parameters, and necessary accuracy, the IBL equations
could be a valuable tool in modelling this kind of flow.
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