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1 Introduction

Methane (CH4) is the second most important greenhouse gas with 32 times the
warming potential of carbon dioxide over a 100-year period (Etminan et al.,
2016). In the short term (∼20 years) the radiative forcing by methane is even
more severe, with 86 times the warming potential (Environment and Climate
Change Canada, 2022). Due to its large effect on the climate and high fugitive
emission rate, governments around the world are drafting policy and committing
resources to reduce anthropogenic emissions of methane. For example, Canada
has recently released a plan to reduce 75% of its methane emissions by 2030
(Environment and Climate Change Canada, 2022). But evaluating the progress
of this plan depends directly on our ability to measure methane emissions. Of-
ficial accounting is done with emission inventories. These are typically gridded
databases of greenhouse gas emission quantities and source types, created with
bottom-up methods. They are based on complex calculations incorporating in-
formation like socio-economic activity, population density, and fugitive emissions
(Crippa et al., 2018; Mostafavi Pak et al., 2021) . But methane emissions in
particular are known to be highly uncertain in the major inventories (Saunois
et al., 2020). In fact, studies in some cities have shown bottom-up estimates to
be lower than direct measurements by a factor of 2 or more (Plant et al., 2019).

Atmospheric measurements and top-down approaches have been used in the past
to refine and validate emission inventories (Duren and Miller, 2012) and enhance-
ment ratios have been shown to be useful for this exact purpose. They are
tracer:tracer ratios which give information about the concentration of one trace
gas in terms of another. Common gases included in literature on enhancement
ratios include carbon monoxide (CO), nitrogen dioxide (NO2), and nitrous oxide
(N2O). To find these ratios, an enhancement must first be identified for each rel-
evant species. This is a part of the atmosphere with a high concentration of the
trace gas from nearby emissions. Then a background concentration is calculated
from surrounding data and subtracted from the whole scene to find anomalies.
Finally anomalies for two different species are compared to derive enhancement
ratios such as CH4:CO or CO2:NO2. Akagi et al. (2011) derived enhancement
ratios from in situ measurements of biomass burning and used them to improve
inventory emission factors. Wunch et al. (2009) used a ground-based remote sens-
ing instrument to measure ratios of CO2, CO, CH4 and N2O in the Californian
South Coast air Basin (SCB). Then Wunch et al. (2016) used similar methods
to derive ethane:methane ratios and quantify natural gas leakage in the SCB.
Hedelius et al. (2018) incorporated ground and satellite measurements into a La-
grangian particle dispersion model to further improve SCB enhancement ratios.
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Several studies using the tracer:tracer technique have been published based on
satellite data collected from the TROPOspheric Monitoring Instrument (TROPOMI,
Veefkind et al., 2012). This instrument has unprecedented spatiotemporal resolu-
tion, is sensitive to tropospheric concentrations, and measures several trace gases
of interest including CO, CH4, NO2, SO2, and HCHO. For example, Lama et al.
(2020) used TROPOMI measurements to calculate NO2:CO ratios and investi-
gate burning efficiencies in megacities. Plant et al. (2022) quantified CH4:CO on
individual days in several cities across North America. They also validated the
satellite-derived ratios with in situ aircraft measurements and inventory driven
transport models. A study in review by MacDonald et al. (2022) calculates
TROPOMI derived CO:NO2 ratios with a similar technique, but also includes
CO:CO2 and NO2:CO2 ratios based on CO2 data from the Orbiting Carbon Ob-
servatory 2/3 (Crisp et al., 2004; Eldering et al., 2019).

One of the main advantages of the enhancement ratio technique is that it pro-
vides insight into atmospheric trace gases with an easy to understand, data-driven
approach. Many studies use satellite measurements and transport model simula-
tions to infer emissions from urban areas (Zheng et al., 2019). These are powerful
tools, but they require specific expertise to set up and are computationally expen-
sive to run. The methodology established by Plant et al. (2022) and MacDonald
et al. (2022) could be used to monitor every major city in the world and calcu-
late enhancement ratios in near real-time. However, some of the relevant trace
gases are notoriously difficult to measure by satellite and the data throughput
is usually poor. The previous two studies can calculate accurate enhancement
ratios on days when the coverage is good, but most cities only get a handful of
such days per year. For example it would be difficult to gain insight into seasonal
trends with these techniques. Urban consumption of fossil fuels (CH4 especially)
tends to vary throughout the year, so seasonal trends are of particular interest.

Our method combines many TROPOMI overpasses together into a single scene,
to try to calculate enhancement ratios for each calendar season. We use a com-
bined rotation and oversampling technique (Fioletov et al., 2011, 2013; McLinden
et al., 2012) to boost the signal of trace gas emissions above the background noise.
Even when TROPOMI coverage is very good, the precision, accuracy, and foot-
print size of the instrument makes it difficult to observe a distinct plume or see a
clear enhancement. For example, the diffuse enhancements of CH4 over Toronto
in single overpasses are typically ∼1% above the background. But the bias and
random error are reported as ∼0.2% and ∼0.8%, respectively (Schneising et al.,
2019). We could naively average the overpasses in a given time period, but that
is still not good enough. The winds around any urban area can change direc-
tion and speed, so averaging in this way would smear the plumes over a large area.
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For our analysis, we need a significant enhancement that will stand out against the
noisy background. To solve this problem, we rotate the overpasses according to
the winds at the time of measurement to align the upwind-downwind directions.
This ensures the trace gas emissions are all in roughly the same location downwind
of the city. This creates a well defined plume in aggregate from overpasses that
each likely had poorly resolved plumes. In addition it will average many upwind
footprints, creating a smoother background for our analysis. This technique was
first developed to study SO2 emissions and air quality, but it has since been used
for many applications. Pommier et al. (2013) used it to investigate CO emissions
from megacities and Clarisse et al. (2019) used an extension to find NH3 point
sources. Maasakkers et al. (2022) estimated methane emissions from landfills, in
part using rotated TROPOMI CH4 overpasses.

2 Data Products

2.1 TROPOMI

To calculate enhancement ratios, we use measurements of CH4, CO, and NO2

from the TROPOMI satellite instrument. It is a push-broom, nadir-viewing
spectrometer on board the Sentinel-5 Precursor (S5P) satellite (Veefkind et al.,
2012). S5P was developed by the European Space Agency (ESA) as part of the
Copernicus earth observation programme. It was launched in October 2017 into
a sun-synchronous orbit with a local equator crossing time of about 13:30. The
main advantage of the TROPOMI instrument is its unprecedented spatiotemporal
resolution. The 2600km swath width at nadir allows for global daily (or better)
coverage.

2.1.1 CH4 and CO

We use version 1.8 of the data product from Schneising et al. (2019) as our source
of CH4 and CO measurements. The algorithm behind this product retrieves CH4

and CO simultaneously from two fitting windows in the TROPOMI Shortwave
Infrared (SWIR) band (2300-2343 nm). It is known as the Weighting Function
Modified Differential Optical Absorption Spectroscopy (WFM-DOAS or WFMD)
algorithm and uses a linear least-squares method to scale preselected atmospheric
vertical profiles. We work directly with the column-averaged dry air mole frac-
tions XCH4

and XCO provided in the data product, along with their respective
uncertainties and averaging kernels. The retrieved footprints are approximately
5.5Ö7 km2, but considerably larger (7Ö7 km2) if measured before 6 August 2019.
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The data files provided by Schneising et al. (2019) are binned by calendar day.
But due to the frequent revisit rate of TROPOMI, two overpasses can be con-
tained in a single file with different orbit numbers. When these consecutive
overpasses occur, they are almost exactly 1 hour and 40 minutes apart. Since
the wind direction can change in this time, we split the files based on orbit num-
ber before processing. We also filter out pixels with xch4 quality flag=1 and
xco quality flag=1 as recommended in the documentation.

We opted to use the WFMD product instead of the operational CH4 (Hu et al.,
2016) and CO (Landgraf et al., 2016) products primarily due to the increased CH4

coverage as noted in Schneising et al. (2019). This is likely due to differences in
quality filtering and in the treatment clouds and aerosols. The increased WFMD
coverage can be seen directly by observing an individual overpasses. Figure 1 is
a typical overpass where the CH4 coverage is improved dramatically and includes
footprints over the relevant city. While the CO coverage suffers slightly, prelim-
inary testing shows that enhancements are better correlated with this increase
in CH4 data throughput. Schneising et al. (2019) noted the WFMD algorithm
requires a clear sky for the simultaneous retrieval while the operational CO re-
trieval is designed to handle some cloudy scenes. This likely explains the decrease
in CO coverage observed in Figure 1.

While CH4 coverage improves significantly in the WFMD product, the data qual-
ity does not appear to suffer. Validation against the Total Carbon Column Ob-
serving Network (TCCON) shows that the systematic (4.24 ppb/∼0.2%) and
random (12.39 ppb/∼0.8%) error are well within the quality requirements (1.5%
and 1.0%) outlined by the ESA (ESA, 2017; Schneising, 2022). While a ground-
based validation study for the current operational data product has not been
published, Schneising et al. (2019) have compared it to their WFMD product.
For example in June 2018, the two datasets had a global mean bias of 0.1%, a
standard deviation of 0.7%, and a correlation coefficient of 0.85. The case for
WFMD CO is similar with TCCON-derived systematic (2.62 ppb/∼2.1%) and
random (5.08 ppb/∼5.8%) error significantly less than the requirements (10% and
15%). The agreement (R=0.99) between the WFMD and operational products is
much better for CO with 1.0% mean bias and standard deviation on the order of
the noise level. Note that version 2 of the operational CH4 and CO products be-
ing released soon improve on the WFMD error statistics. This in part motivates
our plan to redo our analysis with these new products (see section 5).
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Figure 1: Comparison of WFMD and Operational products.

2.1.2 NO2

Tropospheric vertical column densities of NO2 are calculated from TROPOMI
UV-Vis measurements in the 0.405–0.465 µm band (van Geffen et al., 2020). The
NO2 footprints are approximately 3.5Ö5.5 km2 which are notably smaller than
those of the previous species. The throughput is also significantly better, with
far fewer lost pixels due to clouds and aerosols. Instead of the operational NO2

product (Eskes et al., 2019), we use an intermediate reprocessing explained in
Eskes et al. (2021). We chose this new dataset due to a change in the operational
NO2 processor in December 2020. This reprocessing was designed to establish a
consistent timeline of NO2 measurements to support research on the impact of
COVID lockdowns on air quality. We filter out any pixels with qa value≤ 0.75
as recommended in the documentation.

The NO2 data files only contain tropospheric column concentrations (molecules
cm−2) and must be converted to tropospheric column-averaged dry air mole frac-
tions (ppb). We follow Wunch et al. (2016) by dividing the column concentrations
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by the dry air column,

XNO2
=

columnNO2

columndry
air

. (1)

And we use the following to calculate the column of dry air,

columndry
air =

Ps

{g}airmdry
air

− columnH2O

mH2O

mdry
air

, (2)

where Ps is the surface pressure, {g}air is the column-averaged gravitational accel-
eration, mdry

air is the molecular mass of dry air (28.9646 g mol−1), and mH2O is the
molecular mass of water (18.01528 g mol−1). We take both the surface pressure
and surface altitude from the algorithm input data contained in the TROPOMI
NO2 files, the latter of which is needed to calculate {g}air. Finally, the files con-
tain the water slant column density rather than the tropospheric water column.
So to find columnH2O we divide the water slant column by the tropospheric air
mass factor.

We also need averaging kernels to compare NO2 measurements with those of other
species. To derive tropospheric versions of the total column averaging kernels we
follow the process in Eskes et al. (2019). This is done by ignoring the averaging
kernel above the tropopause and scaling by the air mass factors,

Atrop =
M

M trop
A, layer <= tropopause, (3)

Atrop = 0, layer > tropopause, (4)

where M and M trop are the total and tropospheric air mass factors, respectively.

2.2 Cities

We define the extent of cities using the European Commission Joint Research
Centre’s (EC-JRC) Global Human Settlement layer Urban Centres Database
(GHS-UCDB, Florczyk et al., 2019). The boundaries of each city are provided by
a multipolygon on a 1kmÖ1km grid. We calculate the centroid of the city based
on this multipolygon and rotate the satellite pixels about this point.

In section 3.4, we calculate an albedo correction in the Toronto area. To do this we
need information about bodies of water and smaller cities in the surrounding area.
We use the free vector and raster map data at naturalearthdata.com. Specifically,
we use the Urban Areas dataset at 10m resolution to identify smaller cities and
towns surrounding Toronto. We also use the 10m North America Lakes dataset
to include the many small lakes and rivers in the larger area.
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3 Methods

3.1 Rotation

In our analysis, we work with any satellite pixels within a bounding box of the
relevant city, defined by a 0.5◦ buffer from the GHS-UCDB city multipolygon. If
an overpass is determined to have pixels in our working domain, we assign the
overpass a wind direction which we derive from the Modern-Era Retrospective
analysis for Research and Applications Version 2 (MERRA-2, Gelaro et al., 2017).
This dataset has 0.5◦ latitude Ö 0.625◦ longitude spatial resolution and 3-hourly
temporal resolution, so we interpolate to the location of the city centroid and
satellite overpass time. Following MacDonald et al. (2022) we use winds at 50m
to represent the boundary layer.

Once an overpass is assigned an associated wind direction, we rigidly rotate the
overpass pixels about the city centroid to align the wind with the positive x-axis.
This was adapted from Pommier et al. (2013) and an example can be seen in
Figure 2. There is a possibility that pixels from outside our initial processing
domain could be rotated into frame. For this reason we work on an extended
domain with a 0.7◦ buffer until after this step.

Figure 2: TROPOMI CH4 before and after rotation. Arrow depicts wind direc-
tion.
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3.2 Oversampling

For a given time period, we rotate the relevant overpasses to align the upwind-
downwind directions, but the data are not in a workable form. They are in
the form of irregularly shaped satellite pixels assembled in distinct overpasses.
To facilitate our analysis, we want to incorporate each pixel into a single scene
with data arranged on a regular grid. Overlapping upwind pixels will be intelli-
gently averaged onto our grid reducing random noise from any one measurement
and forming the background. Similarly measurements downwind will combine to
form a plume with an enhancement significantly greater than the noise level in
the background. It addition the plume will have a more realistic shape than can
be achieved by the large rectangular pixels of the TROPOMI instrument.

This process is called oversampling and we follow Zhu et al. (2017) and Sun et al.
(2018), using a 0.01◦Ö0.01◦ resolution grid. The contribution of each satellite
measurement to a grid cell is weighted by the overlapping area, so that pixels not
completely containing grid cells will have less influence. They are also inversely
weighted by both the pixel observational uncertainty and pixel polygon area. The
equation for oversampled grid cell i is given by

Ω(i) =

∑N(i)
p=1

A(p,i)
S(p)σ(p)

Ω(p)∑N(i)
p=1

A(p,i)
S(p)σ(p)

, (5)

where A is the overlapping area, S is the pixel area, σ is the reported uncertainty,
and Ω is Xgas. This is done for the N pixels that intersect grid cell i. Any of the
ensuing geospatial figures incorporate oversampling.

3.3 Angle Optimization

While wind directions derived from MERRA-2 data usually give a good approx-
imation of plume direction, there are instances in which further adjustments are
necessary. In MacDonald et al. (2022) the authors apply manual adjustments
to wind directions based on visual inspection of the NO2 plume. While this is
a natural solution, it is an infeasible strategy for the number of overpasses we
deal with in this work. Instead we follow the automated wind optimization strat-
egy of Nassar et al. (2017, 2021). We transform latitude-longitude positions of
satellite pixels into along- and cross-wind distances (x and y respectively) and
simulate enhancements using a Gaussian plume model based on the following set

11



of equations

V (x, y) =
F√

2πσy(x)u
e
− 1

2

(
y

σy(x)

)2

,

σy(x) = a

(
x+ x0

xc

)0.894

,

x0 = xc

(y0
a

) 1
0.894

.

Here V is the vertical column downwind, σy(x) controls the width of the plume
and F is the emission rate. We also have the characteristic length scale xc = 1000,
the initial width of the plume y0, the wind speed u, and the atmospheric stabil-
ity parameter a (Pasquill, 1961). We simulate the Xgas enhancement and use a
least squares fit to scale the simulation to best match the observed TROPOMI
data. Finally we calculate the correlation coefficient to determine how close our
simulation is to the real measurements.

It is crucial to note that we are not making an emission estimate and we are not
interested in the calculated value of F . Rather we are just interested in maxi-
mizing the correlation coefficient (which is why we frame this as an optimization
problem). In Nassar et al. (2017, 2021), the authors model emissions from power
plants and simulate the plume at a variety of directions to find the best fit. But
in this work, we have diffuse emissions from an urban area where the observed
plume is not likely to originate from a single point. So we extend the optimization
in Nassar et al. (2017, 2021) to model the plume at a variety of directions and
initial plume widths.

We attempt 7 evenly spaced directions with a maximum allowable adjustment of
±30◦ from the MERRA-2 derived angle. And we attempt 7 evenly spaced initial
plume widths between 0 and 10 km. The two angles with the best correlation
coeifficents are used as boundaries for a second iteration of optimization. As with
the emission rate parameter, we do not use the modelled initial plume width in
our analysis; it’s inclusion provides a better oppourtunity for the algorithm to
find a wind direction that best aligns with the plume. The output of this al-
gorithm for NO2 is demonstrated in Figure 3. The plume with wind direction
optimization has a smaller overall area with a greater enhancement and is more
closely aligned with the positive x-axis. So overall this procedure better aligns
NO2 plumes from individual overpasses.

Since NO2 is short-lived and has low background concentration, some studies use
the observed NO2 plume to supplement wind information from reanalysis prod-
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Figure 3: Rotated/oversampled TROPOMI NO2 omitting (left) and including
(right) wind optimization.

ucts. For example, Reuter et al. (2019) use NO2 plume directions to aid in CO2

emission estimates since power plants are known to co-emit NO2 and CO2. In
MacDonald et al. (2022) the authors also use NO2 enhancements to inform the
location of CO2 plumes. While these species are not necessarily co-emitted by
individual emission sources in cities, urban air is sufficiently well-mixed at this
scale to use this approximation. We ran a series of tests using the NO2 angles
from our wind optimization algorithm, to inform rotation for CH4 and CO over-
passes. One test result for 2019 can be seen in the bottom right of Figure 4.

We also try applying this plume fitting algorithm to the CH4 and CO scenes
directly, but it does not improve the enhancement as dramatically as for NO2.
There is an example contained in Figure 4 or we can compare the left and right
sides of Figure 5. Here we see the CH4 plume dose not have a greater enhance-
ment nor is it better aligned with the positive x-axis. But the optimized CO
plume might be slightly better in these two categories. The absence of dramatic
improvement is likely due to two major factors. The first is the poor coverage of
individual overpasses. The downwind signal usually has missing pixels (especially
over water) and may not resemble a Gaussian plume, resulting in a poor maximal
correlation coefficient and errant wind direction. The second factor is the rela-
tively low enhancement. The plumes we see in CH4 and CO measurements are
only a few parts per billion greater than their backgrounds. This again, makes
it difficult for the algorithm to confidently associate a Gaussian plume and wind
direction to an overpass. In comparison, the NO2 overpasses have significantly
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Figure 4: Oversampled TROPOMI CH4 with various rotation strategies.

better coverage and significant enhancements, so the algorithm can easily asso-
ciate a modelled plume to the data. Another disadvantage of optimizing the CH4

and CO directly is that we would be rotating the plumes of the various trace
gases by different amounts, even if they were measured at the same time. Ulti-
mately, we use the optimized NO2 angles to inform the CH4 and CO rotation. A
systematic analysis of the enhancement correlations could be used in the future
to decide on the best optimization strategy.

One looming issue with the current implementation is that the plume always
begins at the city centroid. But a city might have a plume come from an en-
tirely different place. For example, in some overpasses over Toronto a clear NO2

plume can be seen eminating from Hamilton, while the city centroid is located
in the downtown core. These cases can cause the algorithm to return worse
results or miss the plume entirely. A future implementation could include the
starting latitude-longitude position in the optimization procedure. We could find
the best plume relative to this point, translate the entire overpass to align this
point with the city centroid, and rotate by the optimized angle. This would give
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Figure 5: Rotated/oversampled TROPOMI CH4 and CO omitting (left) and
including (right) wind optimization.

the algorithm an even better oppourtunity to find the best direction and greatly
increasing the alignment of individual plumes.

3.4 Albedo Bias Correction

While developing the methods for this work, we noticed artifacts in the upwind
direction of rotated CH4 data. For example in Figure 4 there is a clearly visible
band of CH4 grid cells that are lower than the background elsewhere. However
methane is known to have a fairly consistent concentration in the troposphere, so
this is overall unexpected. The main loss mechanism for CH4 is due to the OH
radical (Jacob, 1999), but again we do not expect high emissions of this molecule
upwind of Toronto in any scenario. One possible explanation is that this low band
is a feature of the retrieval algorithm or some kind of post-processing, such as
a bias correction. It is not uncommon for albedo to affect space-based measure-
ments of atmospheric trace gases, since detected sunlight is diffusely reflected by
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the surface. The type of reflecting material fundamentally changes the composi-
tion of the incoming light. To be more specific, the apparent albedo reported in
the WFMD product is retrieved at 2313 nm (Schneising et al., 2019). So when we
refer to albedo below, we are really discussing spectral albedo in a small window
around this wavelength. For example, forests have low albedo in the short-wave
infrared (which includes 2313 nm) and reflects less light than would grassy fields
or concrete.

We further probe this issue by rotating and oversampling all available CH4 and
apparent albedo data (Figure 6). We see the upwind band of low CH4 even when
averaging four full years of data. But the right side of Figure 6 shows a ring of
low albedo surrounding the city. If an albedo bias is causing lower than expected
CH4 upwind, it could be suppressing a CH4 plume downwind. And we could be
seeing a high CH4 bias over the urban area where the albedo is highest.

We also want to know what is causing the ring of low albedo around the city.
Figure 7 shows a side-by-side of unrotated, oversampled albedo and a snapshot
from Google Earth based on satellite imagery. The low albedo patch to the west
of the city aligns with some of the densest forest in the area. It is well known
that forests have lower albedo than any other relevant surface cover type like
farmland, grassland, or concrete. The measurements over this western forest are
being smeared into the dark ring shape we see in Figure 6. Looking more closely,
we see that all of the dark patters formed from oversampled albedo data match
with forested areas, as we might expect.

Figure 6: Rotated/oversampled CH4 and apparent albedo at 2313 nm.
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Figure 7: Oversampled apparent albedo and Google Earth snapshot.

To see if these low albedo patterns are affecting CH4, we plot all of the available
column data without rotation next to the apparent albedo (top of Figure 8). We
see clear bands of low albedo that are coincident with low CH4, especially north
the city. This indicates an albedo bias, possibly related to the retrieval algorithm
or post-processing. In order to calculate a correction for this bias, we remove
urban areas from consideration because we are trying to mitigate the influence
of anthropogenic emissions on our scene and correct only for the effect of albedo.
We also remove any data over water due to poor coverage. Even when we average
four years of data, only a handful of pixels exist for a given grid cell over water.
This gives those few pixels a disproportionately large influence on the scene and
on the bias correction formula. The locations of bodies of water and surrounding
urban areas are taken from naturalearthdata.com as latitude-longitude polygons.
The polygons are buffered by 0.07◦ and the data is discarded; this is causing the
holes seen in Figure 8.

During the development of this work, we did not notice a bias in the CO data.
However, just to be sure, we plotted the unrotated CO measurements against
albedo and observed the pattern that we see in methane (bottom of Figure 8).
Observing a correlation with albedo in both species is important because it bol-
sters our argument that this is a feature of the retrieval or bias correction proce-
dure. Note that Schneising et al. (2019) used an approach where CH4 and CO are
retrieved simultaneously. In the area surrounding Toronto, we do not expect the
measurement patterns to match so closely for both species. There is likely not
a natural co-emitting source of CO and CH4. We strongly suspect that the low
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Figure 8: Oversampled CH4 (top), CO (bottom) and apparent albedo with urban
areas and water removed.

albedo patterns are forested areas which are causing lower than expected column
measurements. This could be further confirmed by cross referencing the albedo
patterns with a satellite-based land cover data set.

To calculate the bias correction formula, we roughly follow Lorente et al. (2021),
but use CH4 and CO anomalies instead of a reference value. The apparent albedo
has been oversampled in the same way, as described in Section 3.2. We calculate
anomalies following Section 3.5 and regress them onto the albedo values at every
grid cell with Ordinary Least Squares (OLS). The regression lines can be seen in
Figure 9.

The Pearson correlation coefficient for CH4 is reasonably high (0.74) and indicates
good correlation between measured methane columns and albedo. To correct for
this bias, we subtract the value of this line from each methane pixel before over-
sampling. It has the effect of increasing XCH4

pixels with low albedo (⪅ 0.115)
and decreasing those with high albedo (⪆ 0.115). The correlation is slightly worse
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Figure 9: OLS regression on oversampled CH4/CO against apparent albedo.
Points are coloured by density.

for CO but the anomalies are still clearly dependent on albedo. Note that the
line of best fit is significantly less steep for CO, and therefore the change to XCO
columns will be much less significant.

Figure 10 shows the effect of the bias correction on oversampled and rotated
columns in summer 2020. We see that the upwind band of low CH4 has been
somewhat suppressed, but not completely eliminated. The enhancement over the
city polygon has also been noticeably reduced. We do not have a good explanation
for the remaining upwind low bias. Hachmeister et al. (2022) found an altitude
bias in the WFMD product over Greenland. This motivated our investigation
into altitude, but it showed less significant CH4 or CO correlation (R ≈ 0.5) than
with albedo. And a multilinear fit of both variables showed similar correlation to
that of just albedo. In some preliminary testing, both altitude corrections led to
worse enhancement correlations overall, but more testing could be done to rule
out their use entirely.

3.5 Enhancement Ratios

We follow MacDonald et al. (2022) to calculate the background for CO and NO2.
We apply a nearest neighbour fit (Altman, 1992) with a constant radius of 150km
(1.35◦) on the bottom 75% of the data. This fits a 2-dimensional surface to the
rotated data, while avoiding the influence of anthropogenic emissions (bottom left
Figure 11). On the spatial scale we are working with, we expect a constant CH4

background and do not fit a varying surface to the oversampled data. Rather we
take an average of the bottom 75% of the data and use that as the background
for the entire scene.
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Figure 10: Rotated/oversampled TROPOMI CH4 and CO omitting (left) and
including (right) bias correction.

To calculate anomalies, we subtract the background surface from the oversam-
pled column-averaged dry air mole fraction at every grid cell (bottom right Figure
11). Before we can calculate enhancement ratios, we must divide the oversam-
pled anomalies by the oversampled values of the averaging kernels at the surface
(Appendix section A.1). This process accounts for the sensitivities of the column
measurements on variations at the surface, where we assume the emissions are
happening (Wunch et al., 2009, 2016).

We want to compare the enhancements of the various trace gases, but most of
the grid cells in our anomalies scenes form the background. We choose a plume
box based on the city centroid, which formed the pivot point for rotation. It
extends 0.2◦ west, 0.7◦ east, and ±0.3◦ north-south of the city centroid. This box
usually captures most of the oversampled plumes and is big enough to include
some background.
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Figure 11: CO anomalies for summer 2019.

To calculate enhancement ratios we regress CH4 anomalies onto those of CO and
NO2 in our plume box. We follow MacDonald et al. (2022) and use a reduced
major axis regression (RMA, York et al., 2004), also known as a model 2 re-
gression. This method is used to investigate the underlying relationship between
two variables and has the advantage of handling errors in both x and y. On the
other hand, OLS specifically probes how one variable affects another. Note that
reduced major axis regression will always have a steeper slope than OLS (Smith,
2009).

4 Results and Discussion

Table 1 contains the CH4:CO and CH4:NO2 enhancement ratios for Toronto from
2018-2021. We determined the 2-σ uncertainty estimate by bootstrapping the fit
50 000 times (Efron and Gong, 1983) and taking twice the standard deviation
of the fits. We have arranged the results by season because CH4 emissions are
known to change throughout the year in Toronto. TROPOMI NO2 data is only
available starting in May 2018, so we do not have values for winter or spring 2018.
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Table 1: Toronto Enhancement Ratios.

Note that throughout this work DJF refers to January and February of the listed
year, but December of the previous year.

4.1 CH4:CO

We find the best correlation (R=0.80) between CH4 and CO anomalies in the
summer of 2019. Figure 12 shows the rotated and oversampled data for this
season and the anomalies in the plume box. It also shows a scatter plot of the
grid cells and the RMA regression line that generates the enhancement ratio. For
this season we see coincident, well defined plumes and a relatively smooth back-
ground. The plume box also nicely captures the CO plume without incorporating
too much of the background. We find that coverage is the most important factor
for finding good correlation between anomalies. In summer 2019, each grid cell
has many satellite pixels contributing to its values. This leads to smoother scenes
overall and reduces the influence of individual overpasses.

In general, R values are higher in the spring and summer than in the fall or
winter. This is almost certainly due to clouds limiting the number of successful
retrievals in the colder months. We can see the consequences of poor coverage
in winter 2019 (Appendix section A.2). Many grid cells in the plume box do not
overlap with a single satellite pixel leading to data gaps and fewer pixels for the
regression. Other grid cells are part of an isolated rectangle, which means all
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Figure 12: Seasonal enhancement ratios with best correlation coefficient.

of their information comes from a single satellite pixel. The poor coverage does
not allow for enough pixel averaging and too few measurements are contributing
too much information. Our method may not be suitable for these months and
we may need to use a more careful scene by scene analysis (MacDonald et al.,
2022; Plant et al., 2022) in the future. Appendix section A.2 shows CH4 and CO
anomalies for the rest of 2019 and 2020.

We have also plotted the enhancement ratio yearly trends for any season with R >
0.30 (Figure 13 left side). In 2018, 2019, and 2021 we see CH4:CO at its minimum
during the summer months. Natural gas building heating is a significant source
of CH4 in urban areas that is entirely nonexistent in Toronto in the summertime.
Other urban sources such as gas stoves and hot water boilers will emit relatively
consistently throughout the year. So we would expect CH4 emissions to be lowest
in the summer months. On the other hand, the most significant source of CO
emissions in cities is incomplete combustion from cars (EPA, 2008). Studies have
shown that people drive more on average in the summer (Triplett et al., 2016), so
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we expect CO emissions to be higher. For these two reasons, we expect CH4:CO
to be lowest in the summer, which matches with our observations. We see the
opposite trend in 2020. But this year is exceptional due to the extensive COVID-
19 related lockdowns that occurred in Toronto and throughout the world. There
has been a great deal of research that investigates reductions in anthropogenic
trace gas emissions due to these lockdowns (Laughner et al., 2021; Chen et al.,
2022). During the summer of 2020, there were substantially fewer cars on the
roads and therefore less CO being emitted in Toronto. This reduction in traffic
could account for the higher enhancement ratio we see at this time.

Figure 13: CH4:CO and CH4:NO2 annual trends.

4.2 CH4:NO2

We find the best correlation between CH4 and NO2 anomalies in the winter of
2021, but this is likely a fluke due to very poor CH4 coverage and many un-
populated grid cells. Our second best correlation (R=0.52) occurred in spring
2021 and is shown on the right side of Figure 12. The rest of 2021 is included
in Appendix section A.3. We typically see an intense NO2 enhancement which
smoothly decays in all directions, while the CH4 enhancement is much more dif-
fuse and noisy. As previously mentioned, an NO2 enhancement is much more
obvious due to three factors: the short lifetime (low background), the smaller
pixel size, and the greater coverage. In the oversampled NO2 scenes, individual
satellite pixels are not even visible because of the extensive overlap. This shows
the strengths of this method when there is sufficient available data. There is
another possible issue in the alignment of the CH4 and NO2 plumes that can
be seen in summer 2021 (Appendix section A.3) and other figures not included.
Sometimes the NO2 plume does not extend as far as the CH4 plume and has its
most intense point closer to the city centroid. This could be related to the much
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shorter lifetime of NO2. If the winds are not blowing very strongly, it is possible
that the NO2 decays significantly and has a measured plume much shorter than
that of CH4. Some papers such as MacDonald et al. (2022) include a correction
factor to adjust for this difference.

The right side of Figure 13 shows the yearly trends in CH4:NO2 enhancement
ratios. We use a less restrictive R > 0.25 cutoff because the correlations are
worse overall than for CH4:CO. However we expected the more well-defined NO2

enhancements to lead to better correlations. This could indicate that the simul-
taneous retrieval of CH4 and CO is leading to higher correlations rather than
our method really aligning plumes of different species. It is difficult say anything
about the annual trends in CH4:NO2. The main source of NO2 in urban areas is
from combustion of non-methane fossil fuels EPA (2008) and in Toronto vehicles
are the largest factor. We do not see as drastic of a change in 2020 like we do for
CH4:CO, but we do see a higher CH4:NO2 ratio in the summer and fall of 2020
after the start of COVID-19 related lockdowns.

The poorer correlations between CH4 and NO2 are somewhat alarming. One
possible solution would be to reduce the number of ratios we calculate per year.
For example we could separate the year into three 4-month pieces or two 6-month
pieces. Or we could skew the time window for each ratio, allowing cloudier seasons
to be grouped together. We have investigated many of these ideas already and
there are promising possibilities, but we have yet to do the in depth analysis
required. By grouping more data into the same scene, we will inevitably see
less noisy enhancements. For example, Maasakkers et al. (2022) obtained a very
distinct methane plume originating from a landfill by incorporating all available
data into a single analysis. We have also investigated filtering to some extent,
but it is not included in this work. Due to the predominantly westerly winds in
Toronto, many CH4 overpasses should have plumes over lake Ontario, but those
pixels almost never pass quality assurance. So many overpasses do not contribute
to the enhancement at all and an argument could be made for their exclusion.

5 Future Work

The most important work to be done is to validate this methodology. In Toronto,
we can do this with the network of ground-based EM27/SUN spectrometers in
the city maintained by Professor Debra Wunch and Environment and Climate
Change Canada. These instruments measure column-averaged dry air mole frac-
tions of trace gases like CH4, CO, and CO2, which makes them perfectly suited
for validating satellite data products. They are also much more accurate and
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precise and measure far more frequently over Toronto than TROPOMI. While
there are only a handful of detectors throughout the city, we can still calculate
enhancements by considering the winds and carefully selecting the right detector
as the background source. We can obtain enhancement ratios and directly com-
pare them to those in this work. This would be a reliable way to know if our
method is really capturing reality. We will also expand our analysis to other cities
with extensive ground-based instrument networks like Los Angeles and Boston.
It is possible that Toronto is difficult to analyze due to the presence of the lake,
local weather patterns, and the geometry of the city.

We would also like to incorporate CO2 data from OCO-2/3, possibly using tech-
niques from MacDonald et al. (2022). The ratios derived with CO2 would provide
more opportunities to validate our technique with ground-based instruments or
to compare to existing literature and emission inventories. We also urgently need
to add a method for calculating uncertainty. We attempted to copy the process
outlined in MacDonald et al. (2022), but it was a severe underestimate of the
uncertainty. The authors used 500 iterations of bootstrapping with replacement,
but we have thousands of grid cells contributing to the regression rather than
hundreds of satellite pixels. We will need to develop another technique, but it
will likely be based on bootstrapping which is popular in past research on en-
hancement ratios.

By the end of 2022, version 2 of the operational TROPOMI CH4 product (Lorente
et al., 2021) will be released. This is set to include updates to spectroscopy, a
posteriori bias corrections, and the full-physics retrieval algorithm. Validation
against TCCON shows that the CH4 random error (5.6 ppb/∼0.3%) is signifi-
cantly less than that of the WFMD product we use here (12.39 ppb/∼0.8%), with
similar levels of bias. Research similar to our own has already been published
(Maasakkers et al., 2022) using an early edition of this update, so we are hopeful
that an analysis with this new dataset will improve some of our results. This
will also give us an opportunity to directly compare the operational and WFMD
products and gain insight into their differences.

Eventually we would also like to investigate urban emissions with a high-resolution
chemistry transport model. We would like to know if methane measurements from
TROPOMI have the accuracy, precision, and granularity necessary to be useful
on such a small scale. We are also interested in enhancement ratios derived from
inventory-driven simulations and how they compare to our results above and
those of MacDonald et al. (2022) and Plant et al. (2022). Finally we want to
try to assimilate TROPOMI CH4 observations and see if they contribute to flux
inversions of cities like Toronto.
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