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1 Introduction

Consider Ω =
∏n
i=1 Ωi where each Ωi is a probability space and Ω has the product mea-

sure. Let A ⊆ Ω.

We would like to say something about the probability of a random variable in Ω
landing in A. But we have not specified a measure on any of our Ωi spaces so we have
little information to work with. Our main tool will be the so-called convex distance
ρ(A, x) that measures the distance from a point x to A in a clever way. This will be
used in the following theorem called Talagrand’s inequality

Pr[A]Pr[Act ] ≤ e−t
2/4

where the convex distance is used to define our At set. This is a manifestation of the
concentration of measure phenomenon and in some cases it is a direct improvement on
other concentration inequalities. Talagrand’s inequality can tell us about probabilistic
quantities of many variables. For example under certain assumptions it can show that if
a function does not depend too much on any one variable, then it is concentrated around
its expectation. We begin by trying to understand how our distance function behaves.

2 The Convex Distance

2.1 First Definition

Consider x = (x1, . . . , xn) ∈ Ω. First we introduce the Hamming Distance for some
other y = (y1, . . . , yn) ∈ Ω:

d(x, y) =

n∑
i=1

1{xi 6=yi}

This is just the number of elements that differ between strings or vectors. Now for any
α ∈ Rn we define the α-weighted Hamming Distance:

dα(x, y) =
n∑
i=1

αi1{xi 6=yi}

Now for our A ⊆ Ω we take the shortest“distance” to the set:

dα(A, x) = inf
y∈A

dα(x, y)

We define the convex distance by maximizing the sum over all possible choices of α with

|α| =
√∑

α2
i :

ρ(A, x) = sup
|α|=1

dα(A, x)
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Alternatively let the convex distance ρ be the least real number such that for some α
with |α| = 1 there exists y ∈ A with

n∑
i:xi 6=yi

αi ≤ ρ(A, x)

These are equivalent statments. Lastly for any real t ≥ 0 we define the set,

At = {x ∈ Ω : ρ(A, x) ≤ t}

and Act to be its compliment. Note that when x ∈ A we can select y = x so that A0 = A.
The α-weighted hamming distance is often used in computer science to analyse high
dimensional data, which is what we are doing here: reasoning about how close x is to A.

2.2 Second Definition and Equivalence

Define U(A, b) to be the set of s = (s1, . . . , sn) ∈ {0, 1}n with the property that there
exists y ∈ A such that

xi 6= yi =⇒ si = 1

This is some set in the binary hypercube that we can think of as representing the pos-
sible paths from x to A. For technical reasons si = 1 does not mean xi 6= yi. If some
u ∈ U(A, x) has ui = 0 it means that xi = yi and we do not have to adjust these
coordinates. We concern ourselves with the ui such that ui = 1. Note that now ρ(A, x)
is the least real for all u ∈ U(A, x) and α ∈ Rn with |α| = 1 such that α · u ≤ ρ(A, x).

Next is a definition of the convex hull that we will rely on for the duration of this
report. The convex hull of a finite set B with N points is the intersection of all convex
sets containing B, or equivalently, the unique minimal convex set containing B. The
convex hull of b1, b2, . . . , bN ∈ B is given by{

N∑
i=1

λjbj : λj ≥ 0 and

N∑
i=1

λj = 1

}

Now we define V (A, x) as the convex hull of U(A, x). That is, the unique minimal
convex set containing U(A, x). The following result provides a new way to think about
this distance function ρ that sits at the heart of Talagrand’s Inequality.

Theorem.
ρ(A, x) = min

v∈V (A,x)
|v|

Proof. Suppose v ∈ V (A, x) achieves this minimum. We can draw a hyperplane through
v that entirely separates V (A, x) from the origin. For all s ∈ V (A, x) which is convex,
we know s · v ≥ v · v. If we set α = v

|v| then for all s ∈ U(A, x) ⊆ V (A, x) we have

ρ(A, x) ≥ s · α ≥ v · v|v| = |v|
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Conversely, take any α with |α| = 1 and again assume v assumes this minimum.
Clearly α ·v ≤ |v|. From the definition of convex hull and since v ∈ V (A, x) we can write
v =

∑
λiti for some ti ∈ U(a, x) where all λi ≥ 0 and

∑
λi = 1. Then

|v| ≥ α · v = α ·
∑

λiti =
∑

λi(α · ti)

hence, α · ti ≤ |v| for any ti we choose. But we know ρ(A, x) is the least real such that
ρ(A, x) ≥ α · ti so finally ρ(A, x) ≤ |v|.

One way to picture the convex distance is to imagine the point x moving to the
origin and the set A collapsing into to binary hypercube. Then we just measure the
Euclidean distance from the origin to the convex hull of our new A set. In general, the
first definition is better for applications as we often have our αi values explicitly. The
second version is more of a theoretical tool and we use it exclusively to prove Talagrand’s
inequality.

3 Talagrand’s Inequality

The first theorem holds the insight and nuance of Talagrand’s inequality. We will prove
it by a beautiful induction argument that makes use of the convex distance we have
been working with. However it does not look like a traditional concentration inequality.
After an easy application of Chebyshev’s inequality we arrive at the more pleasing form
in theorem two. Throughout the rest of the report we will denote Pr[X ∈ A] by simply
Pr[A] where X is a random variable in Ω. We will also suppress the measure notation
from our integrals. Since measures on the sets Ωi are unrelated, we can just apply
Fubini’s theorem by integrating on each separately one at a time.

Theorem 1. ∫
Ω

exp

[
1

4
ρ2(A, x)

]
≤ 1

Pr[A]

Theorem 2 (Talagrand’s Inequality).

Pr[A]Pr[Act ] ≤ e−t
2/4

Proof. First we fix A and consider X = ρ(A, x) as a random variable. After a simple
application of Chebyshev’s Inequality we have,

Pr[Act ] = Pr[X ≥ t] = Pr[eX
2/4 ≥ et2/4] ≤ E[eX

2/4]e−t
2/4

Now we use the previous theorem so that

E[eX
2/4] =

∫
Ω
eX

2/4 ≤ 1

Pr[A]
=⇒ Pr[Act ] ≤

e−t
2/4

Pr[A]
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3.1 Proof of Theorem 1

We proceed by induction on the dimension n. For n = 1 we only have to vary one
coordinate, so ρ(A, x) = 1 if x /∈ A and zero otherwise so that∫

Ω
exp

[
1

4
ρ2(A, x)

]
=

∫
A

exp

[
1

4
ρ2(A, x)

]
+

∫
Ac

exp

[
1

4
ρ2(A, x)

]
= Pr[A]+Pr[Ac]e

1
4 ≤ 1

Pr[A]

since c+ (1− c)e
1
4 ≤ c−1 for 0 < c ≤ 1.

Assume the result holds for n. Let OLD =
∏n
i=1 Ωi and NEW = Ωn+1 so that

Ω =OLDxNEW. Any z ∈ Ω can now be uniquely written as z = (x, ω) with x ∈ OLD
and ω ∈ NEW. Set

B = {x ∈ OLD : (x, ω) ∈ A for some ω ∈ A}

and for any ω ∈ NEW set

Aω = {x ∈ OLD : (x, ω) ∈ A}

Given z = (x, ω) ∈ Ω we can move to A ⊆ Ω in two different ways. If we are willing
to change ω, we reduce our problem to moving from x to B. So we change x until we
find a suitable ω so that (x, ω) lies in A. If we do not want ω to change, we need to move
from x to Aω. Thus

s ∈ U(B, x) =⇒ (s, 1) ∈ U(A, (x, ω))

and
t ∈ U(Aω, x) =⇒ (t, 0) ∈ U(A, (x, ω))

Note that this is where the condition xi = yi ; si = 0 or equivalently si = 1 ; xi 6=
yi is important. If we are moving from t ∈ U(Aω, x) to U(A, (x, ω)) we can guarantee
that the last coordinate lies in A since we already have the ω’th coordinate in the set,
hence ω = 0. But if we are moving from s ∈ U(B, x), there are some values of the ω’th
coordinate that lie in A and some that do not. So we need ω = 1 to be flexible either way.

We take the convex hulls, so if s ∈ V (B, x) and t ∈ V (Aω, x) then (s, 1) and (t, 0)
are in V (A, (x, ω)). Here we are viewing U(B, x), U(Aω, x), and U(A, (x, ω)) as subsets
of their convex hulls. By the above definition of a convex hull

((1− λ)s+ λt, 1− λ) = ((1− λ)s+ λt, (1− λ) · 1 + λ · 0) ∈ V (A, (x, ω))

Since ρ is the shortest of all distances to the convex hull

ρ(A, (x, ω)) ≤ |(1− λ)s+ λt, 1− λ|
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By convexity of the Euclidean norm and the square function (ie u→ |u2| is convex), we
can apply the definition of a convex function and the triangle inequality so that

ρ2(A, (x, ω)) ≤ |(1− λ)s+ λt|2 + (1− λ)2

≤ (1− λ)|s|2 + λ|t|2 + (1− λ)2

Remember s ∈ V (B, x) and t ∈ V (aω, x) so if we pick s and t to be the points with
minimal norm |s| = ρ(B, x) and |t| = ρ(Aω, x). We are slightly abusing notation since
s and t were originally defined in the sets of discreet points but now we treat them as
members of the convex hulls. This yields the critical inequality

ρ2(A, (x, ω)) ≤ (1− λ)ρ2(B, x) + λρ2(Aω, x) + (1− λ)2

Remember x ∈ OLD so we can fix ω and bound the integral over all possible values of x∫
OLD

exp

[
1

4
ρ2(A, (x, ω))

]
≤
∫

OLD
exp

[
1

4

(
(1− λ)ρ2(B, x) + λρ2(Aω, x) + (1− λ)2

)]
≤ e(1−λ)2/4

∫
OLD

(
exp

[
1

4
ρ2(B, x)

])1−λ(
exp

[
1

4
ρ2(Aω, x)

])λ
By Hölder’s Inequality (see section 5.1) this is at most

e(1−λ)2/4

(∫
OLD

exp

[
1

4
ρ2(B, x)

])1−λ(∫
OLD

exp

[
1

4
ρ2(Aω, x)

])λ
We apply the induction hypothesis to each integral separately. Therefore the previous
statement is at most

e(1−λ)2/4

(
1

Pr[B]

)1−λ( 1

Pr[Aω]

)λ
= e(1−λ)2/4

(
1

Pr[B]

)(
1

Pr[B]

)−λ(
Pr[Aω]

)−λ
=

1

Pr[B]
e(1−λ)2/4γ−λ

where γ = Pr[Aω]/Pr[B] ≤ 1 because Aw ⊆ B. Now we apply the argument in section
5.2 and find∫

OLD
exp

[
1

4
ρ2(A, (x, ω))

]
≤ 1

Pr[B]
(2− γ) =

1

Pr[B]

(
2− Pr[Aω]

Pr[B]

)

Now if we integrate over ω, Pr[B] does not change because the set B does not change
as we vary ω. It is fixed at its definition by considering all ω ∈ NEW. However as ω
changes, Aω certainly changes. As we integrate we are adding ω slices of A for which all
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x ∈ OLD lie in A. So we get back all of A by integrating! This is just Fubini’s theorem.
Therefore considering ω ∈ NEW∫

NEW

∫
OLD

exp

[
1

4
ρ2(A, (x, ω))

]
≤ 1

Pr[B]

(
2− Pr[A]

Pr[B]

)
=

1

Pr[A]
x(2− x) ≤ 1

Pr[A]

where x = Pr[A]/Pr[B] ∈ [0, 1]. But we know x(2 − x) ≤ 1, completing the induction
and hence the theorem.

4 Bin Packing

This is an important problem in applied mathematics and computer science and Ta-
lagrand’s inequality offers an insightful way to approach the problem. The function
that describes the minimum number of bins is so complicated that it cannot be studied
explicitly. Instead we have to use concentration inequalities to bound the probability
that a random variable deviates from is expectation (or median). In this section we will
compare Azuma’s inequality to the more sophisticated Talagrand’s inequality, however
we could also use it to get an explicit concentration.

Consider numbers x1, x2, . . . , xn ∈ [0, 1] packed into bins of size 1 based on their
sums. So 0.4 and 0.5 can be packed in the same bin, but 0.6 and 0.7 cannot. Let f(x)
denote the minimum number of bins required. Consider the random variable f(X) where
X1, X2, . . . , Xn are independent random variables taking values in [0,1].

We begin with this well known result but forgo a proof in this report.

Theorem (Azuma’s Inequality). Let X1, X2, . . . , Xn be independent random variables.
Let f(X1, X2, . . . , Xn) obey the following stability condition

|f(x1, . . . , xi, . . . , xn)| − |f(x1, . . . , x
′
i, . . . , xn)| ≤ ai

for all i ≤ n and for constants a1, a2, . . . , an. Then we have

Pr(f − Ef ≥ t) ≤ exp

(
− t2

2
∑n

i=1 a
2
i

)
In the case of bin packing, changing any one xi can only add at most one bin. So

if it cannot fit in any existing bin, it gets one of its own. So the stability condition of
Azuma’s inequality implies ai = 1 for all i ≤ n. And we get the following bound on the
probability that the number of bins deviates from its average

Pr(f(X)− Ef(X) ≥ t) ≤ exp

(
− t2

2n

)
If we want this probability to be less than some δ

δ = exp

(
− t2

2n

)
=⇒ t =

√
2n log

1

δ
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We can restate the amount f deviates from its mean as follows

Pr

(
f(X)− Ef(X) ≤

√
2 log

1

δ
·
√
n

)
≥ 1− δ

Now we pivot to Talagrand’s Inequality.

We need one property of f(x) which represents the minimum number of bins required.
For any x ∈ [0, 1]n

f(x) ≤ 2
n∑
i=1

xi + 1

since at worst, each xi is slightly more than a half and each gets its own bin. This brings∑n
i=1 xi to slightly more than n. The +1 accounts for the case that all of our values fit

in one bin. Using this fact, for any x, y ∈ [0, 1]n we get

f(x) ≤ f(y) +
∑

i:xi 6=yi

xi + 1

since the xi such that xi 6= yi is like its own new packing and we can use the previous
result.

Now let α = α(x) ∈ [0,∞)n be the unit vector x/||x||. We have∑
i:xi 6=yi

xi = ||x||
∑

i:xi 6=yi

αi = ||x||dα(x, y)

where dα is the α-weighted Hamming Distance.

Now let M be the median of f and set AM = {y : f(y) ≤ M}. By definition of the
convex distance ρ and the above argument, for each x ∈ [0, 1]n there exists y ∈ AM such
that

f(x) ≤ f(y) + 2
∑

i:xi 6=yi

xi + 1 ≤M + 2||x||ρ(AM , x) + 1 (1)

From the statement of Talagrand’s Inequality we can conclude

Pr
(
ρ(AM , x) ≥ t

)
≤ 1

Pr(AM )
e−t

2/4

≤ 2e−t
2/4

since the probability of lying on one side of the median is 1/2. If we set this probability
to be within the same bound δ as above we have

δ = 2e−t
2/4 =⇒ t =

√
4 log

2

δ
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We can adjust what we have as follows

Pr
(
ρ(AM , x) ≤ t

)
≥ 1− δ

=⇒ Pr
(
Mf(X) + 2||X||ρ(AM , x) + 1 ≤Mf(X) + 2||X||t+ 1

)
≥ 1− δ

=⇒ Pr
(
f(X) ≤Mf(X) + 2||X||t+ 1

)
≥ 1− δ

=⇒ Pr
(
f(X)−Mf(X) ≤ 2||X||t+ 1

)
≥ 1− δ

Finally we rewrite the norm and insert the value we found for t so that

Pr
(
f(X)−Mf(X) ≤

√
16 log

2

δ
·

√√√√ n∑
i=1

X2
i + 1

)
≥ 1− δ

We compare the inequalities from both methods for the same δ

Azuma’s: Pr

(
f(X)− Ef(X) ≤

√
2 log

1

δ
·
√
n

)
≥ 1− δ (2)

Talagrand’s: Pr
(
f(X)−Mf(X) ≤

√
16 log

2

δ
·

√√√√ n∑
i=1

X2
i + 1

)
≥ 1− δ (3)

In order to compare these statements we need to consider their differences. The +1 in (3)
will not matter since one extra bin is the smallest possible measurement of difference. We
are generally talking about many bins, so the number of bins will certainly deviate from
the average by many as well. Also we can assume that the mean of f is close to the me-

dian. And since the logarithm dramatically shrinks its argument
√

2 log 1
δ ≈

√
16 log 2

δ .

We have concluded that the most significant difference between our concentration

inequalities is
√
n in Azuma and

√∑n
i=1X

2
i in Talagrand. Remember that Xi is dis-

tributed between 0 and 1 so at worst
√∑n

i=1X
2
i =

√∑n
i=1 12 =

√
n. Therefore with

Talagrand we already have a tighter bound with the same probability. But in general,
Xi will not be close to one and X2

i will be even smaller.

Now consider the distribution with which Xi is chosen. It could produce most val-
ues extremely close to 0 and very few values close to one. This will put the constant√∑n

i=1X
2
i close to zero and give us a very tight bound with Talagrand’s inequality.

Meanwhile the constant
√
n from Azuma’s inequality will not change at all as Xi changes.

It cannot detect the distribution with which Xi is chosen. So we get the same bound
whether the random values are all close to 1 or close to 0. Finally we can see the power
of Talagrand’s inequality in that it truly measures how each variable contributes to its
expectation rather than treating each “dimension” the same.
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5 Details

5.1 Hölder’s Inequality

Theorem (Hölder’s Inequality). Given a probability space Ω and measurable functions
f and g if p, q ∈ [1,∞] satisfy 1/p+ 1/q ≤ 1 then

||fg||1 ≤ ||f ||p||g||q

When we make use of the above in the proof of theorem 2 our norm is the integral
with respect to the product measure on OLD. We also chose p = 1/(1− λ) and q = 1/λ
which are greater than one since 0 ≤ λ ≤ 1 and 1/p+ 1/q = (1−λ) +λ = 1 ≤ 1. So our
proof above uses Hölder’s Inequality in the following way∫

OLD
exp(c1)(1−λ) exp(c2)λ ≤

(∫
OLD

exp(c1)
1−λ
1−λ

)(1−λ)(∫
OLD

exp(c2)
λ
λ

)λ
=

(∫
OLD

exp(c1)

)(1−λ)(∫
OLD

exp(c2)

)λ
5.2 Optimization

Lemma. e(1−λ)2/4γ−λ ≤ 2− γ at the minimum over λ

Proof. First we minimize with respect to λ

d

dx
e(1−λ)2/4γ−λ = 0

=⇒ 1

2
e(1−λ)2/4γ−λ (−2 log γ + λ− 1) = 0

=⇒ λ = 1 + 2 log γ

But we also have the requirement that 0 ≤ λ ≤ 1 =⇒ e−1/2 ≤ γ ≤ 1. If γ does not
satisfy this condition then the minimum occurs at λ = 0.

If λ = 0 is the minimum then 0 ≤ γ ≤ e−1/2 and e(1−λ)2/4γ−λ = e1/4 ≤ 2− γ.

If λ = 1 + 2 log γ then

e(1−λ)2/4γ−λ = e2 log γγ−1−2 log γ = γ2γ−1−2 log γ = γ−2−4 log γ

This has maximum value of e1/4 at γ = e−1/4. So for this value of λ we again have
e(1−λ)2/4γ−λ ≤ 2− γ
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5.3 Convex distance is Euclidean

The following is a discreet space where the convex distance is actually Euclidean and
can reinforce our understanding of its behaviour. Consider Ω = {0, 1}n and A ⊆ Ω.

Consider the second version of the convex distance. We can think of our point x
moving to the origin and points of A moving to the binary hypercube. Since A is
discrete it will look almost the same in U(A, x) just rotated. Except U(A, x) could have
some extra points with a 1 in some coordinates but conveniently these are further away
from the origin and do not contribute to the convex distance. So our convex distance is
the Euclidean distance from the origin to V (A, x), the convex hull of U(A, x). This is
the exact same as the Euclidean distance from x to the convex hull of A.
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